If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X^2+8X-3=0
We add all the numbers together, and all the variables
5X^2+8X-3=0
a = 5; b = 8; c = -3;
Δ = b2-4ac
Δ = 82-4·5·(-3)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{31}}{2*5}=\frac{-8-2\sqrt{31}}{10} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{31}}{2*5}=\frac{-8+2\sqrt{31}}{10} $
| 4u+13=53 | | (5x-7)-5(7x-12)+7=0 | | (9/6t-8)=2 | | a-12/16+42=26 | | 2x-x=+x=4 | | -13+25y=-8 | | 2x+5=3(x+1)−5 | | 3z-2z(1+3)=30 | | 14x-38=130 | | -12-w/4=12 | | 0=3z-6z= | | 54(3x+18)=90 | | 7x-20=3x+41 | | -×-4x-7=-2x+5 | | 9x+5-x-9=20+4x | | 143=(2x+10)(2x+8) | | 2y+3y=3 | | 4d-7-12=23 | | .2x=120 | | 15=v/3=-9 | | 6(c-2)=20 | | 6(y+3)=84 | | 3(x-5)^2+2=434 | | 18+3x=-4 | | 5(x-20)=-8(2-2x)-3x | | 4x=75x+x | | -7/b-2=10 | | 25^v-1=625 | | 4h(3h+8)=0 | | 7÷n=14 | | 3+n=4+5 | | -24-6y=-12 |